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High resolution NWP ⇒ new observation types

Numerical weather prediction (NWP) systems evolving:

Increased computing power ⇒ higher resolution models
Also for global models (ECMWF 16 km)

Meso-scale models:

Very high resolution (2.5 km, 1 km, 0.5 km?)

Higher resolution requires more sophisticated physics

⇒ Non-hydrostatic, i.e. convection permitting physics

Higher resolution/more sophisticated physics requires
observations of high temporal frequency and horizontal resolution
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High resolution NWP ⇒ new observation types
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⇒

Observations from
weather radars!

Wind and re�ectivity
(precipitation)
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Models used at met.no/Norway

HIRLAM 8 km, 4 km, hydrostatic

Uni�ed Model (UM) 4km, non-hydrostatic physics, even 1 km
for small domains

Replace HIRLAM with:

Harmonie 5.5 km, ALARO, 3DVAR and surface data
assimilation
Harmonie 2.5 km, AROME, 3DVAR and surface data
assimilation
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HIRLAM and ALADIN

HIRLAM joined ALADIN, focus on meso-scale

Successor of the HIRLAM system: Harmonie

Harmonie can utilize the AROME physics package:
Non-hydrostatic

Météo-France already have support for radar data in Harmonie:

Assimilation of

Radar re�ectivity (precipitation)
Radar radial winds

Next slides taken from Eric Wattrelot's presentation at the radar
meeting in Oslo, Norway, March 2010.
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  Implementation of the radar reflectivity Implementation of the radar reflectivity 
assimilation method in Aromeassimilation method in Arome

Eric WattrelotEric Wattrelot



  

3h - cumulated rain  -  P3-P0

REFL CTRL
r00 – 3 cycling

Capability to shift the cold front (well 
located on the 3-hour forecast from the 
analysis with reflectivities)



  

r03 – 4 cycling

REFL CTRL

Good drying up on the front of 
the main rainfalls with 

reflectivities assimilated

Good quantity of rainfalls on this 
area with reflectivities 

assimilated

3h - cumulated rain  -  P3-P0
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Better scores on REFL 
run between P6 and P9

BAD
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FAR

POD
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Positive impact 
on longer 
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Assimilation of radar re�ectivity

Radar data

Clutter
removal

Pseudo-obs

3DVAR

Update
control var.

Forecast

Re�ectivity is not a control variable in the model

Method from Météo-France: 1D Bayesian + 3DVAR

Generate pseudo-observations from model
background: Humidity pro�les

Fig: Olivier Caumont
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Project at met.no on radar data

Project started summer 2009: Focus on radar data assimilation
Using AROME in Harmonie 2.5 km
Domain covering south of Norway

Take advantage of method developed by Météo-France

⇒ Météo-France BUFR �les for radar observations
(No WMO standard tables for radar images)

Radar data project at met.no � Main goals

Improve Quality control of radar data

Pre-processing, data conversion, prepare for NWP

Assimilation of radar re�ectivity observations

Assimilation of radar radial wind observations

Rapid Update Cycling (RUC, 3h)

Project end December 2011

Financed by Energy Norway/The Research Council of Norway
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Quality control of radar data observations

Radar data observations are not perfect:

Clutter: Unwanted echoes

Sea-clutter: Waves on water pass through Doppler-�lter
Ground-clutter (buildings, etc.)
Tra�c noise (boats, planes)
Sun �are

Other: Birds, insects, cha�, ...

Static maps of beam blockage (mountains)

Absolutely essential to remove/�ag pixels of
non-meteorological echoes

in order to get positive impact on forecast
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Filtering of radar data
Identication and correction: Seaclutter/groundclutter

No �lter Filtered

Radar Bømlo in Norway.
Christo�er A. Elo and Morten Salomonsen, met.no
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Classi�cation of precipitation at met.no

2011-03-10 1000

Rain/sleet/snow
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CONRAD: CONversion of RADar data

met.no: Local radar data available in PRORAD XML �les

Observation handling in Harmonie (BATOR) reads
Météo-France BUFR �les

⇒ Need for conversion ⇒ CONRAD

CONRAD: Under development, modular library:

Read/write routines for Météo-France BUFR
Read routines for local formats developed separately
Currently supports Norwegian re�ectivity observations
Support for IRIS data in the making (Tomislav Kovacic)
HIRLAM-B: 3.2.1 UO1: Assimilation of radar data

Will probably be used by Sweden, Denmark, The Netherlands,
Ireland, Spain, Croatia, Hungary(?), ...

CONRAD: CONversion of RADar data

Subversion: https://svn.met.no/prepradar/ (GPL)
Mailinglist: http://lists.met.no/mailman/listinfo/conrad

https://svn.met.no/prepradar/
http://lists.met.no/mailman/listinfo/conrad
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Diverse data formats, versatile tool, common domain

Di�erent local formats

Common tool (CONRAD ⇒ Météo-France BUFR)

Common NWP system (Harmonie/AROME)

Common domain for
testing: Denmark

Radar data from various
di�erent formats inside
same domain
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Results

Observed re�ectivity (dBZ)

Observed re�ectivity at
analysis time (Pseudo
CAPPI ∼500-700 m)



Results

Model 6h accumulated precipitation

Model precipitation: +6h
forecast, 6h accumulated
precip. and wind (level
40), valid at analysis time



Results

Analysis increment xradara − xradarb (RH)

Analysis increment
xradara − xradar

b
, relative

humidity (RH), when radar
re�ectivity is assimilated
(level 40)



Results

Analysis di�erences xradara − xnoradara (RH)

Analysis di�erences
xradara − xnoradara (RH) with
and without radar
re�ectivity assimilation
(level 40)



Results

Di�erences in forecasted
accumulated precipitation

+4h



Results

Di�erences in forecasted
accumulated precipitation

+5h



Results

Di�erences in forecasted
accumulated precipitation

+6h



Results

Di�erences in forecasted
accumulated precipitation

(animation)



Thank you!

martin.s.gronsleth@met.no
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