

## Meteorologisk institutt met.no

## Radar data assimilation in Hirlam/Aladin/Arome models

Martin S. Grønsleth, PhD R&D, met.no, Norway OMSZ, Hungary, 2011-04-18

## Outline

#### 1 Meso-scale data assimilation

- High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data
- 4 Results on reflectivity assimilation, south of Norway



## Outline

#### 1 Meso-scale data assimilation

- $\bullet$  High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data
- 4 Results on reflectivity assimilation, south of Norway



- Numerical weather prediction (NWP) systems evolving:
  - Increased computing power  $\Rightarrow$  higher resolution models
  - Also for global models (ECMWF 16 km)
- Meso-scale models:
  - Very high resolution (2.5 km, 1 km, 0.5 km?)

- Numerical weather prediction (NWP) systems evolving:
  - Increased computing power  $\Rightarrow$  higher resolution models
  - Also for global models (ECMWF 16 km)
- Meso-scale models:
  - Very high resolution (2.5 km, 1 km, 0.5 km?)

Higher resolution requires more sophisticated physics



- Numerical weather prediction (NWP) systems evolving:
  - Increased computing power  $\Rightarrow$  higher resolution models
  - Also for global models (ECMWF 16 km)
- Meso-scale models:
  - Very high resolution (2.5 km, 1 km, 0.5 km?)

Higher resolution requires more sophisticated physics  $\Rightarrow$  Non-hydrostatic, *i.e.* convection permitting physics

- Numerical weather prediction (NWP) systems evolving:
  - Increased computing power  $\Rightarrow$  higher resolution models
  - Also for global models (ECMWF 16 km)
- Meso-scale models:
  - Very high resolution (2.5 km, 1 km, 0.5 km?)

Higher resolution requires more sophisticated physics  $\Rightarrow$  Non-hydrostatic, *i.e.* convection permitting physics

Higher resolution/more sophisticated physics requires observations of high temporal frequency and horizontal resolution







Martin S. Grønsleth, PhD R&D, met.no, Norway

Radar data assimilation in Hirlam/Aladin/Arome models





Martin S. Grønsleth, PhD R&D, met.no, Norway Radar data assimilation in Hirlam/Aladin/Arome models

## Models used at met.no/Norway

- HIRLAM 8 km, 4 km, hydrostatic
- Unified Model (UM) 4km, non-hydrostatic physics, even 1 km for small domains



## Models used at met.no/Norway

- HIRLAM 8 km, 4 km, hydrostatic
- Unified Model (UM) 4km, non-hydrostatic physics, even 1 km for small domains
- Replace HIRLAM with:
  - Harmonie 5.5 km, ALARO, 3DVAR and surface data assimilation
  - Harmonie 2.5 km, AROME, 3DVAR and surface data assimilation



## Outline

#### 1 Meso-scale data assimilation

 $\bullet$  High resolution NWP  $\Rightarrow$  new observation types

#### HIRLAM and ALADIN

- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data
- 4 Results on reflectivity assimilation, south of Norway



## HIRLAM and ALADIN

- HIRLAM joined ALADIN, focus on meso-scale
- Successor of the HIRLAM system: Harmonie
- Harmonie can utilize the AROME physics package: *Non-hydrostatic*



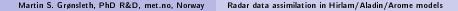
## HIRLAM and ALADIN

- HIRLAM joined ALADIN, focus on meso-scale
- Successor of the HIRLAM system: Harmonie
- Harmonie can utilize the AROME physics package: *Non-hydrostatic*

Météo-France already have support for radar data in Harmonie:

- Assimilation of
  - Radar reflectivity (precipitation)
  - Radar radial winds

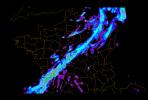



## HIRLAM and ALADIN

- HIRLAM joined ALADIN, focus on meso-scale
- Successor of the HIRLAM system: Harmonie
- Harmonie can utilize the AROME physics package: *Non-hydrostatic*

Météo-France already have support for radar data in Harmonie:

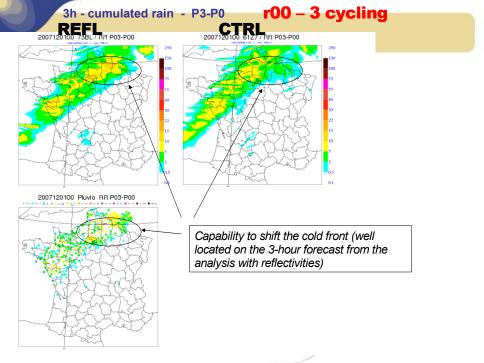
- Assimilation of
  - Radar reflectivity (precipitation)
  - Radar radial winds

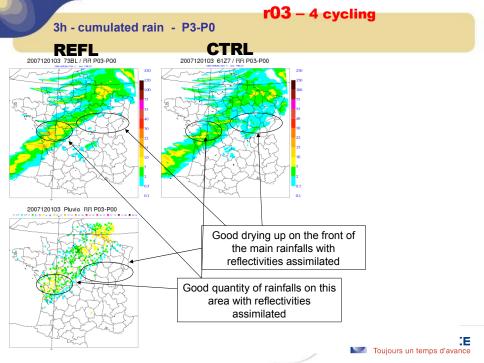

Next slides taken from Eric Wattrelot's presentation at the radar meeting in Oslo, Norway, March 2010.

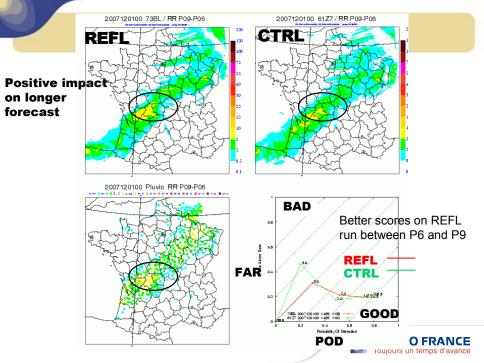


# Implementation of the radar reflectivity assimilation method in Arome





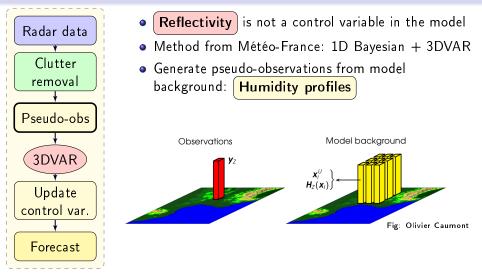

#### **Eric Wattrelot**



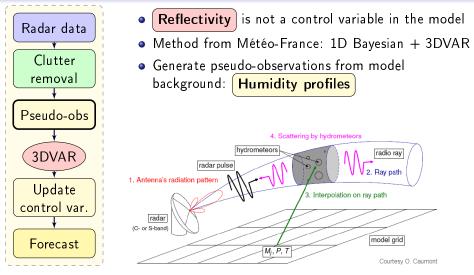







## Outline

#### 1 Meso-scale data assimilation


- $\bullet$  High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data
- 4 Results on reflectivity assimilation, south of Norway



#### Assimilation of radar reflectivity



#### Assimilation of radar reflectivity



M, hydrometeor contents (rain water, snow, graupel, pristine ice)

- Project started summer 2009: Focus on radar data assimilation
- Using AROME in Harmonie 2.5 km
- Domain covering south of Norway



- Project started summer 2009: Focus on radar data assimilation
- Using AROME in Harmonie 2.5 km
- Domain covering south of Norway
- Take advantage of method developed by Météo-France

Météo-France BUFR files for radar observations

(No WMO standard tables for radar images)

- Project started summer 2009: Focus on radar data assimilation
- Using AROME in Harmonie 2.5 km
- Domain covering south of Norway
- Take advantage of method developed by Météo-France
  - Météo-France BUFR files for radar observations
  - (No WMO standard tables for radar images)

#### Radar data project at met.no - Main goals

- Improve Quality control of radar data
- Pre-processing, data conversion, prepare for NWP
- Assimilation of radar reflectivity observations
- Assimilation of radar radial wind observations
- Rapid Update Cycling (RUC, 3h)



- Project started summer 2009: Focus on radar data assimilation
- Using AROME in Harmonie 2.5 km
- Domain covering south of Norway
- Take advantage of method developed by Météo-France
  - Météo-France BUFR files for radar observations
  - (No WMO standard tables for radar images)

#### Radar data project at met.no - Main goals

- Improve Quality control of radar data
- Pre-processing, data conversion, prepare for NWP
- Assimilation of radar reflectivity observations
- Assimilation of radar radial wind observations
- Rapid Update Cycling (RUC, 3h)
- Project end December 2011

Financed by Energy Norway/The Research Council of Norway

Martin S. Grønsleth, PhD R&D, met.no, Norway

Radar data assimilation in Hirlam/Aladin/Arome models

- Project started summer 2009: Focus on radar data assimilation
- Using AROME in Harmonie 2.5 km
- Domain covering south of Norway
- Take advantage of method developed by Météo-France
  - Météo-France BUFR files for radar observations
  - (No WMO standard tables for radar images)

#### Radar data project at met.no - Main goals

- Improve Quality control of radar data
- Pre-processing, data conversion, prepare for NWP
- Assimilation of radar reflectivity observations
- Assimilation of radar radial wind observations
- Rapid Update Cycling (RUC, 3h)
- Project end December 2011

Financed by Energy Norway/The Research Council of Norway

Martin S. Grønsleth, PhD R&D, met.no, Norway

Radar data assimilation in Hirlam/Aladin/Arome models

## Outline

#### Meso-scale data assimilation

- High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations

#### Quality control of radar data observations

- Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data

#### 4 Results on reflectivity assimilation, south of Norway



#### Quality control of radar data observations

Radar data observations are not perfect:

- Clutter: Unwanted echoes
  - Sea-clutter: Waves on water pass through Doppler-filter
  - Ground-clutter (buildings, etc.)
  - Traffic noise (boats, planes)
  - Sun flare
  - Other: Birds, insects, chaff, ...
- Static maps of beam blockage (mountains)

#### Quality control of radar data observations

Radar data observations are not perfect:

- Clutter: Unwanted echoes
  - Sea-clutter: Waves on water pass through Doppler-filter
  - Ground-clutter (buildings, etc.)
  - Traffic noise (boats, planes)
  - Sun flare
  - Other: Birds, insects, chaff, ...
- Static maps of beam blockage (mountains)

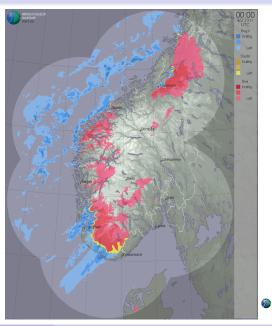
Absolutely essential to remove/flag pixels of non-meteorological echoes in order to get positive impact on forecast



#### Filtering of radar data Identication and correction: Seaclutter/groundclutter

#### No filter




Anteurologi intitut

Radar Bømlo in Norway. Christoffer A. Elo and Morten Salomonsen, met.no

Martin S. Grønsleth, PhD R&D, met.no, Norway Radar data assimilation in Hirlam/Aladin/Arome models

## Classification of precipitation at met.no

- 2011-03-10 1000
- Rain/sleet/snow



Martin S. Grønsleth, PhD R&D, met.no, Norway

Radar data assimilation in Hirlam/Aladin/Arome models

## Outline

#### Meso-scale data assimilation

- High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data

4 Results on reflectivity assimilation, south of Norway



## CONRAD: CONversion of RADar data

- met.no: Local radar data available in PRORAD XML files
- Observation handling in Harmonie (BATOR) reads Météo-France BUFR files
- $\Rightarrow$  Need for conversion  $\Rightarrow$  CONRAD

#### CONRAD: CONversion of RADar data

Subversion: https://svn.met.no/prepradar/ (GPL) Mailinglist: http://lists.met.no/mailman/listinfo/conrad

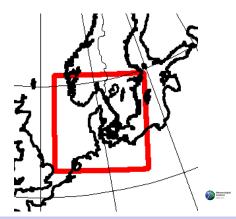
## CONRAD: CONversion of RADar data

- met.no: Local radar data available in PRORAD XML files
- Observation handling in Harmonie (BATOR) reads Météo-France BUFR files
- $\Rightarrow$  Need for conversion  $\Rightarrow$  CONRAD
- CONRAD: Under development, modular library:
  - Read/write routines for Météo-France BUFR
  - Read routines for local formats developed separately
  - Currently supports Norwegian reflectivity observations
  - Support for IRIS data in the making (Tomislav Kovacic)
  - HIRLAM-B: 3.2.1 UO1: Assimilation of radar data

#### CONRAD: CONversion of RADar data

Subversion: https://svn.met.no/prepradar/ (GPL) Mailinglist: http://lists.met.no/mailman/listinfo/conrad

## CONRAD: CONversion of RADar data


- met.no: Local radar data available in PRORAD XML files
- Observation handling in Harmonie (BATOR) reads Météo-France BUFR files
- $\Rightarrow$  Need for conversion  $\Rightarrow$  CONRAD
- CONRAD: Under development, modular library:
  - Read/write routines for Météo-France BUFR
  - Read routines for local formats developed separately
  - Currently supports Norwegian reflectivity observations
  - Support for IRIS data in the making (Tomislav Kovacic)
  - HIRLAM-B: 3.2.1 UO1: Assimilation of radar data
- Will probably be used by Sweden, Denmark, The Netherlands, Ireland, Spain, Croatia, Hungary(?), ...

#### CONRAD: CONversion of RADar data

Subversion: https://svn.met.no/prepradar/ (GPL) Mailinglist: http://lists.met.no/mailman/listinfo/conrad

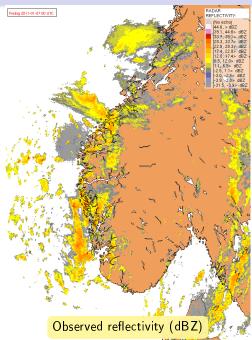
## Diverse data formats, versatile tool, common domain

- Different local formats
- Common tool (CONRAD  $\Rightarrow$  Météo-France BUFR)
- Common NWP system (Harmonie/AROME)
- Common domain for testing: Denmark
- Radar data from various different formats inside same domain

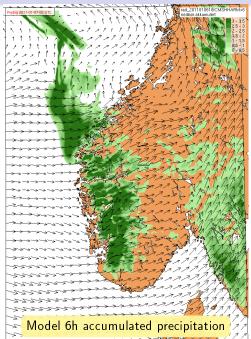


Martin S. Grønsleth, PhD R&D, met.no, Norway

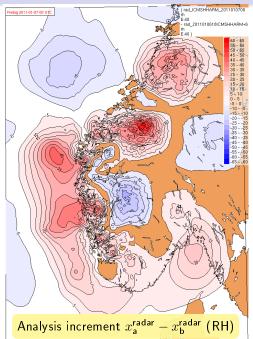
Radar data assimilation in Hirlam/Aladin/Arome models


## Outline

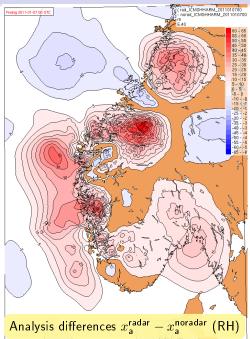
#### Meso-scale data assimilation


- High resolution NWP  $\Rightarrow$  new observation types
- HIRLAM and ALADIN
- Experiences from Météo-France
- Method: Humidity profile pseudo-observations
- Quality control of radar data observations
  Filtering of radar observation at met.no
- Collaboration on radar data assimilation
  CONRAD: CONversion of RADar data

#### Results on reflectivity assimilation, south of Norway





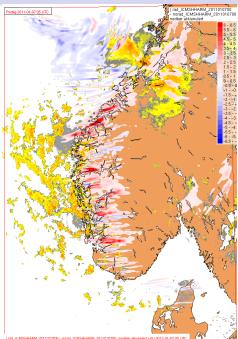


Observed reflectivity at analysis time (Pseudo CAPPI ~500-700 m)




Model precipitation: +6h forecast, 6h accumulated precip. and wind (level 40), valid at analysis time

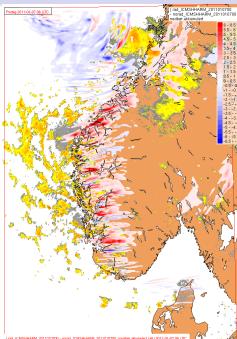


Analysis increment  $x_{a}^{radar} - x_{b}^{radar}$ , relative humidity (RH), when radar reflectivity is assimilated (level 40)




Analysis differences  $x_{a}^{radar} - x_{a}^{noradar}$  (RH) with and without radar reflectivity assimilation (level 40)




Differences in forecasted accumulated precipitation

+4h



Differences in forecasted accumulated precipitation

+5h



Differences in forecasted accumulated precipitation

+6h

# Differences in forecasted accumulated precipitation

(animation)

#### Acknowledgments

- Energy Norway
- The Research Council of Norway (RCN/193048)
- ECMWF (SPNOHARM)
- Météo-France (Thibaut Montmerle, Eric Wattrelot)
- Radar producers at met.no (M. Salomonsen, C. A. Elo)
- Colleagues at met.no R&D dept., especially my former office roommate Roger Randriamampianina

#### Thank you!

#### martin.s.gronsleth@met.no

