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I will focus on techniques that are currently used or could be
used to solve the data assimilation problem for a state-of-the-art
research or operational numerical model of the atmosphere

(In essence, I am excluding ensemble particle filters from my
discussion)
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Why Do We Need Data Assimilation?

The purpose of data assimilation:
In Numerical Weather Prediction (NWP) the purpose of
data assimilation is to generate initial conditions for the
NWP forecasts. We call the result of data assimilation,
which is a representation of the state of the atmosphere on
a grid, the analysis.
Analyses are also often used to study the climate (e.g.,
based on reanalyses) and to study dynamical processes in
the atmosphere.
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The Challenges in Data Assimilation

The observation locations typically do not coincide with the
model grid points.
Observations are taken continuously in time, while
analyses are typically prepared every 1, 3, or 6 hours.
The observed physical quantities are not necessarily the
same as the model variables. Most importantly, remotely
sensed observations (e.g., satellite based observations
and radar observations) measure quantities that depends
on a complicated integral of the model variables.
The number of observations is huge. This is a relatively
new problem: in the XX. century, one of the main
challenges was to obtain an estimate of the atmospheric
state based on a limited number of observations.
Tight operational time constraint
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Illustration I: Surface Pressure Observations

While surface pressure is a state vector component in almost
all models, there are large regions where surface pressure
observations are not available: the state of these state vector
components has to be inferred from observations of other state
vector components and past observations
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Illustration II: Wind Observations

While the two horizontal components of the wind vector are
state vector components in all models, there are large regions
where wind vector observations (derived from cloud movement)
are available for a narrow layer of the atmosphere (the model
atmospheres go from the surface to less than 1 hPa)
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Illustration III: Total Column Ozone Observations
Derived from Ultra Violate Backscattering

Ozone concentration is a state vector component in the
models, but the satellite based instruments measures radiance,
which is related to an integral of a set of model variables.
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Daily Data Ingest
from the presentation by S. Lord at the UMD 2007 Data Assimilation Summer
School
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Mathematical Formulation of the Data Assimilation
Problem

Let x be the m-dimensional vector representing the state of
the model at a given time. The time evolution of the model
is represented by a trajectory {x(t)} in the m-dimensional
state space
Suppose we are given a set of noisy observations of the
atmosphere made at various times
We want to determine which trajectory {x(t)} of the system
fits the observations “best”
The state estimate for a given time t along the trajectory is
called the analysis
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Illustration for m=1: model with one variable

t

x(
t)

: observations
: “best fit” trajectory

ta

: analysis at ta
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Assumptions

Assume that the observations are the result of measuring
quantities that depend on the system state in a known way,
with Gaussian measurement errors.
An observation at time tj is a triple (yo

j ,Hj , Rj), where yo
j is

a vector of observed values, and Hj and Rj describe the
relationship between yo

j and x(tj):

yo
j = Hj(x(tj)) + εj ,

where εj is a Gaussian random variable with mean 0 and
covariance matrix Rj .
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The Least-Square Problem to be Solved

The trajectory of the system that best fits the observations at
times t1 < t2 < · · · < tn can be obtained by solving a
least-square problem, an idea originally proposed by Gauss
(around 1795) and Legendre (1805):

The likelihood of a trajectory x(t) is proportional to

L[x(t)] =
n∏

j=1

exp
(
−1

2
[yo

j −Hj(x(tj))]T R−1
j [yo

j −Hj(x(tj))]
)

.

The most likely trajectory is the one that maximizes this
expression, or equivalently minimizes the “cost function”

Jo({x(t)}) =
n∑

j=1

[yo
j −Hj(x(tj))]T R−1

j [yo
j −Hj(x(tj))].
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Potential Approaches to Solve the Formal Problem

Variational Approach: A direct minimization of the cost
function
Sequential Estimation of the State (Extended Kalman
Filter)

A new state estimate is obtained at each analysis time
The model dynamics is used to propagate the state
estimate between observation times
It was originally proposed in a pair of papers by Kalman
(1960) and Kalman and Bucy (1961) for linear systems and
was extended to nonlinear systems in the late 60’s
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Rudolf Kalman Receives the National Medal of
Science And Technology on October 7, 2009

I. Szunyogh Ensemble Based Data Assimilation



The Data Assimilation Problem
Mathematical Formulation

Concluding Remarks

General Solution Strategy
Sequential Data Assimilation: Extended Kalman Filter
Ensemble Based Kalman Filters (EnKF)

Sequential Algorithms

All practical methods are sequential schemes, which propagate
the state estimate between two analysis times (e.g. 0000 UTC
and 0600 UTC, 0600 UTC and 1200 UTC, 1200 UTC and
1800 UTC) with integrating the model:

xb
n =Mtn−1,tn(x

a
n−1),

and are equivalent to minimizing the cost function

Jo
tn(x) = [x−xb

n]T (Pb
n)−1[x−xb

n]+ [yo
n−Hn(x)]T R−1

n [yo
n−Hn(x)].

xa
n−1 is the analysis at time tn−1 and

xb
n is the background , the background error covariance

matrix Pb
n represents the uncertainty in the state estimate

xb
n
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Illustration of the Sequential Data Assimilation for One
Model Variable

t

x
(t

)

xb(t1)
xb(t2)

xb(t3)

xb(t4)

xa(t1)

xa(t2)

xa(t3)

xa(t4)

: model integration

: analysis
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Extended Kalman Filter

State Update Equation:

xa
n = xb

n + K(yo
n − Hnxb

n).

where the Kalman Gain Matrix K is

K = PbHT (HPbHT + R)−1,

and the Background Error Covariance matrix is evolved
with

Pb
n = Mtn−1,tnPa

n−1, MT
tn−1,tn .

where Mtn−1,tn is the linearization of the dynamicsMtn−1,tn
The error in the analysis is described by the Analysis
Error Covariance Matrix

Pa = (I− KH)Pb
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Main Obstacles to Implement a Straight Kalman Filter
on a High-Dimensional System of Multiple Timescales

Prohibitive computational cost of evolving the background
error covariance matrix (was considered a show-stopper
until about a decade ago)
Unbounded error growth at the fast time scales in the
linearized model (problematic, but can be handled in
practice)
Labor intensive development and maintenance of the
linearized model (painful, but doable)
Remark: Practical implementations of the variational
approach also face the last two problems (and can handle
them)
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Practical Approach to Kalman Filtering:
Ensemble-Based Kalman Filtering (EnKF)

Ensemble representation of the probability distribution (which is
still considered Gaussian)

Instead of a single analysis an ensemble of analyses is
prepared, whose mean is xa

n−1 and is consistent with the
analysis error covariance matrix

Pa
n−1 = (I + Pb

n−1HT
n−1R−1

n−1Hn−1)
−1Pb

n−1.

The ensemble members are evolved with the nonlinear
model to obtain the background ensemble for the next
analysis time, which provides the estimates of xb

n and Pb
n.
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Some Attractive Properties of the EnKF Schemes

They do not require the development and maintenance of a
linearized version of a dynamics, which makes them easy
to develop and maintain and they are easily portable
(these properties made them the clear favorite of the
academic community)
Although not obvious from what have been said in this talk,
they do not require a linearized version of the observation
operator (this property makes them very attractive to
developers of complex observation operators, e.g., those
based on a radiative transfer model)
These schemes scale well on massively parallel computers
(in fact, these schemes would not be practical without such
computers)
They provide a set of ensemble initial conditions,
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Some Notable Examples for EnKF Schemes

First Published Attempt: Evensen (1994); First Correct
Formulation: Houtekamer and Mitchell (1998)
Serial Schemes Using Perturbed Observations: e.g.,
papers by Houtekamer, Evensen, Snyder, F. Zhang and
co-authors
Serial Schemes Using a Square-Root Filter: e.g.„
papers by Whitaker, Hamill, J. Anderson
Parallel Estimation of State Vector Components Using
a Square-Root Filter: papers by Ott, Hunt, Szunyogh and
coathors—The latest product is the Local Ensemble
Transform Kalman Filter (LETKF)
The current versions of these schemes provide about the
same analysis accuracy, but there are important
differences in the computational efficiency
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Most Important Active Areas of Research in EnKF

Estimation of model errors with the method of state
augmentation and the optimal use of the model error
information in the formulation of the analysis equations
Estimation of observation bias (important for remotely
sensed observations
Accounting for effects of nonlinearity in the dynamics and
the observation operator in the EnKF
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EnKF has become a mature technology
All leading operational centers are testing some flavor of
the EnKF and are in the process of implementing hybrid
Var-Ensemble schemes (in these schemes the ensemble
provides all or part of the background error estimates
The distinction between variational and ensemble based
schemes is becoming rather artificial
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