
Friday Afternoon Cloud Physics Talk (FACT), 27. April 2018. 

Part II: Solving problems related to cloud physics Problems list 

 

 

Problem 1. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 6.7. 

An air sample contains aerosol particles of sodium chloride with sizes ranging from D0 to Dmax and 

distributed according to the Junge form of problem 6.4. Nucleus counts are taken in a thermal-gradient 

diffusion chamber by observing the number of droplets that are activated as a function of the supersaturation. 

If Dmax ≫ D0, show that the number of activated droplets is related to supersaturation by N  s2. 

The Junge distribution from 0.1 µm to 10 µm in diameter: 

𝑛𝑙(𝐷) = {
𝑐 ∙ 𝐷−3,     0.1𝜇m ≤  𝐷 ≤  10𝜇m

0,                otherwise

 

 

Problem 2. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 7.1. 

Probe that, in general, the difference between the masses of two droplets growing in the same environment 

according to the approximation (1) increases with time. 

𝑟(𝑡) = √𝑟0
2 + 2 ∙ 𝜉 ∙ 𝑡  (1) 

where 𝜉 =
(𝑆−1)

[𝐹𝑘+𝐹𝑑]
, where Fk represents the thermodynamic term that is associated with heat conduction; Fd 

is the term associated with vapor diffusion. 

 

Problem 3. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 7.4. 

A sample of moist air is cooled isobarically. A cloud forms and the cooling continues. In a form similar to 

(2), the rate of change of the saturation ratio may be written: 

𝑑𝑆

𝑑𝑡
= 𝑞1 ∙

𝑑𝑇

𝑑𝑡
− 𝑞2 ∙

𝑑𝜒

𝑑𝑡
 

where 𝑑𝑇 𝑑𝑡⁄  and 𝑑𝜒 𝑑𝑡⁄  are the rates of change of temperature and condensed water. Derive expressions 

for the thermodynamic factors q1 and q2. Evaluate these expressions for 𝑝 = 80 𝑘𝑃𝑎 and 𝑇 = 280 𝐾. 

Where (2) is the following: 

𝑑𝑆

𝑑𝑡
= 𝑄1 ∙

𝑑𝑇

𝑑𝑡
− 𝑄2 ∙

𝑑𝜒

𝑑𝑡
 

where 𝑄1 =
1

𝑇
∙ [

𝜀∙𝐿∙𝑔

𝑅′∙𝑐𝑝∙𝑇
−

𝑔

𝑅′] and 𝑄2 = 𝜌 ∙ [
𝑅′∙𝑇

𝜀∙𝑒𝑠
+

𝜀∙𝐿2

𝑝∙𝑐𝑝∙𝑇
]. 

 



Problem 4. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 7.5. 

To analyze the approximate behavior of the supersaturation in a cloud of growing droplets, suppose the 

droplets are all the same size, growing by condensation according to (1). Let 𝜈0 denote their concentration 

per unit mass of air, and regard this quantity as a constant under the assumption that no new drops are 

created and that no existing drops are lost. Show that these assumptions, taken in connection with (2) lead 

to 𝑑𝑠 𝑑𝑡⁄ = 𝜔 − 𝜂 ∙ 𝑠, where 𝜔 = 100 ∙ 𝑄1 ∙ 𝑈 and 𝜂 = 4 ∙ 𝜌𝐿 ∙ 𝜈0 ∙ 𝑟 ∙ 𝑄2 (𝐹𝑘 + 𝐹𝑑)⁄ . (Denote, that U is the 

vertical velocity: 𝑑𝑧 𝑑𝑡⁄ ). Assuming further that the temperature, pressure and droplet size are slowly 

varying compared to the supersaturation s, find the solution of this equation that satisfies the initial condition 

𝑠 = 𝑠0 at 𝑡 = 𝑡0, Show that the supersaturation tends to 𝑠∞ = 𝜔 𝜂⁄  as the time increases, and that the 

relaxation time of the supersaturation is 𝜂−1. 

 

Problem 5. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 8.4. 

A drop of 0.2 mm diameter is inserted in the base of a cumulus cloud that has a uniform liquid water content 

of 1.5 g/m3 and a constant updraft of 4 m/s. Using the elementary form of the continuous-growth equation 

and neglecting growth by condensation, determine the following: 

(a) the size of the drop at the top of its trajectory; 

(b) the size of the drop as it leaves the cloud; 

(c) the time of the drop resides in the cloud. 

Assume a collection efficiency of unity, and for the dependence of fall velocity on size use the data in Table 

1. (Note: Parts (a) and (b) of this problem are well suited for graphical solution. 

The continuous-growth equation is the following: 

𝑑𝑅

𝑑𝑧
=

𝐸𝑚 ∙ 𝑀

4 ∙ 𝜌𝐿
−

𝑢(𝑅)

𝑈 − 𝑢(𝑅)
 

where Em is the effective average value of collection efficiency for the droplet population and M is the cloud 

liquid water content in units of mass per unit volume, U is the vertical velocity and u(R) is the terminal fall 

speed of the drop. 

 

Problem 6. R. R. Rogers & M. K. Yau: A Short Course in CLOUD PHYSICS Problem 8.6. 

A small drizzle drop is swept upwards in a cumulus congestus cloud and grows by accretion and 

condensation in the supersaturated environment. The condensation parameter ξ may be regarded as constant 

and the linear fall speed law of problem 8.1 approximated the relative velocity between the growing drop 

and the cloud droplets. Develop and solve the differential equation that describes the growth of the drop by 

accretion and condensation acting simultaneously. Compare the result with the approximation obtained by 

adding the solutions for growth by accretion and by condensation acting separately. 

The linear fall speed law is the following: 𝑣 = 𝑘3 ∙ 𝑟, where 𝑘3 = 8 × 103 𝑠−1. 

 


