

Aerosol processing in Stratocumulus clouds

Gabriella Schmeller

University of Pécs, Department of Geography

Pécs, 10.11.2017

Friday Afternoon Cloud Physics Talk

Model

- 2D kinematic framework (Grabowski, 1998; Smolarkievicz, 1984), typical parameters for Stratocumulus clouds
 - most common cloud type globally
 - approx. thickness of 300-500
 - precipitation: drizzle
 - Size of the domain: 1.5 km vertically, 1.5 km horizontally (spatial resolution in both directions 20 m)
 - Steady state flow field, max. 1 m s⁻¹ wind speed in the updraft and -1 m s⁻¹ in the downdraft region
 - Physical processes involved: diffusional growth of water drops, collision- coalescence and evaporation of water drops

Up- and downdraft regions

Initial values

- Chemical composition of aerosol particles: ammonium-sulfate
- Use of bin scheme (Geresdi & Rasmussen, 2005)
- Two types of particles, size range (in radius):
 - Dry aerosol, from $0.01\mu m$ to $10 \mu m$, divided into 36 bins
 - Water drops/haze particles: from $0.01 \ \mu m$ to 5 mm, divided into 55 bins
 - Computation of chemical reactions and collision-coalescence only for droplets greater than 1.5 μm in radius
 - Formation of droplets in aerosol particles: at 90 % relative humidity or more

Ed.: Dr. Noémi Sarkadi

- Absorbed gases by droplets: SO_2 , NH_3 , O_3 , H_2O_2 , CO_2
- Processes involved:
 - Absorption/desorption
 - Oxidation of SO_2 by H_2O_2 and O_3 , production of sulfate ions
 - Change of pH
 - Aerosol mass increase after the evaporation of droplets

Concentration of the dry sulfate particles (cm ⁻³)	Concentration of the trace gases in the atmosphere (ppbv)	name of the case	Conta Oxida
50	$SO_2 = 0.1$ $H_2O_2 = 0.1$ $O_3 = 4.0$ $NH_3 = 0.1$	CN50_CLN	are no
100	$SO_2 = 1.0$ $H_2O_2 = 1.0$ $O_3 = 40$ $NH_3 = 0.1$	CN100_CLN	
100	$SO_2 = 10$ $H_2O_2 = 10$ $O_3 = 100$ $NH_3 = 10$	CN100_POL*	
250	$SO_2 = 10$ $H_2O_2 = 10$ $O_3 = 100$ $NH_3 = 10$	CN250_POL	
540	$SO_2 = 10$ $H_2O_2 = 10$ $O_3 = 100$ $NH_3 = 10$	CN540_POL*	

Control cases: Oxidation processes are not involved

Change of pH

Production of dry aerosol

(cases – control cases)

 $[kg kg^{-1}]$

Comparison of the results of bin and bulk scheme

Summary

- Absorption and pH strongly depends on the size of droplets
- Significant amount of sulfate is produced in droplets due to the oxidation of SO_2
- The size distribution of aerosol particles changes after the evaporation of droplets, which is the consequence of sulfate ions produced due to oxidation and the formation of ammonium-sulfate after the evaporation of droplets
- The change of the aerosol size distribution decreases the amount of surface precipitation in the case of high initial aerosol concentration

Thank you for your attention!