Applicability of climate projections

Gabriella Szépszó Hungarian Meteorological Service

2nd PannEx national seminar, Budapest January 11, 2017

OUTLINE

1. Introduction

2. Modelling background

3. Impact studies

4. Outlook

Introduction

- Adaptation in Hungary for many years:
 - Preparation either for any possibility or for the scenario kept intuitively the most likely → not sustainable (expensive, wrong ways)
 - Fragmented *local* impact studies using different basis (sometimes coarse resolution *global* results)
- Aim: objective impact studies based on state-of-the-art input data and methodology, considering the special user requirements
- For targeted and sustainable adaptation: high-quality meteorological information, quantitative and comparable impact assessments, considering uncertainties

Climate modelling

- Description of processes and interactions in the Earth system with <u>modelling</u> tools
- Global climate model (GCM) results → <u>downscaling</u> with regional climate models (RCM)
- Test for the past → <u>validation</u> against observations
- Impact of anthropogenic activity
 → projections for the future

Projection uncertainties

- "Yes—no" vs probabilistic forecasts and projections
- Multiple sources: deficiencies in description of physical and anthropogenic processes
- Quantification: <u>ensemble</u> of model simulations
- Ideal ensemble: represents the uncertainties coming from the scenario and model choice →
- Multi-scenario, multi-model ensembles

Application of model information

(Ideal path)

Quantified uncertainties

Available climate projections for Hungary

Main characteristics

- NAGiS version 1 and 2
- Projections for 2 targets:
 - 1. 2021–2050: "short-term" planning
 - 2071–2100: long-term strategy, robustness & significance
- Model & scenario uncertainties represented, but hard to

Model	ALADIN	RegCM
Forcing	ARPEGE	ECHAM, HadGEM
Resolution	10 km	
Scenario	A1B, RCP8.5	A1B, RCP4.5

Post-processing: special statistical or dynamics-based downscaling

Quantified uncertainties

- Some post-processing possibility:
 - Raw model data
 - Delta method: applying projected change with respect to a reference period
 - Error correction: removal of systematic errors or correcting the results in other way based on <u>past</u> observations
 - Delta method in impact studies: using raw model data, and changes are quantified for impacts → "impact observations" are needed

Some example: delta method

- Steps:
 - Calculation of future change (delta) with respect to a reference period
 - Adding this delta to reference values (observations)
- Observations are needed
- Constant model errors assumed

Some example: correction

- Steps:
 - 1. Fitting the model results to the observations in the reference period
 - 2. Application of the same fitting to the results for the future
- Make the users relaxed
- Observation time series are needed → consistency?
- Constant climate assumed
- No universal method → bringing new uncertainty

- Some impact studies based on projection data in NAGiS:
 - Estimation of future hydrological conditions of Lake Balaton
 - Estimation of future agricultural production
 - Climate change impacts on tourism)
 - Climate change effects on number of road accidents
 - Climate change impacts on heatwave related excess mortality

Impact studies: Lake Balaton

Varga et al., 2015

• Estimation of future water balance

- Input: ALADIN_A1B temperature, precipitation, relative humidity, wind-speed (delta method)
- Results: warming + decrease in precipitation and inflow → evaporation increase → natural water budget decrease

Impact studies: tourism

Németh & Kovács, 2016

- Input: ALADIN_A1B temperature, precipitation, relative humidity, wind-speed, global radiation
- Results: climate index for tourism (CIT) empirically tuned
- Delta method for climate impact

- Need of a more representative projection ensemble: new simulations with ALADIN and REMO RCMs applying RCP4.5 and RCP8.5 scenarios
- Updated results → new impact assessments

- Uncertainties not only in projections' level
- Training and support of the users, decision makers for correct interpretation of climate projections

End-users: economy, society, human health, politics

Thank you for your attention! E-mail: <u>szepszo.g@met.hu</u>

Hankin