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Models

“The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
Jjustification of such a mathematical construct is solely and
precisely that it is expected to work."™— John von Neumann

@ a spot-on description of the justification of the
mathematical model of data assimilation—this model is
“expected to work”, because it has worked for more than
50 years, with steady improvements of the accuracy;

@ the “verbal interpretations” are crucial, because they guide
our intuition, but they also tend to make us forget that we
are working with only a model,
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The Mathematical Model of Data Assimilation

The Mathematical Model of Data Assimilation

@ Let x be the m-dimensional vector representing the state of
the model at a given time. The time evolution of the model
is represented by a trajectory {x(?)} in the m-dimensional
state space

@ Suppose we are given a set of noisy observations of the
atmosphere made at various times

@ We want to determine which trajectory {x(t)} of the system
fits the observations “best”

@ The state estimate for a given time t along the trajectory is
called the analysis
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The Mathematical Model of Data Assimilation

lllustration for m=1: model with one variable

O : observations

A
— : “best fit” trajectory
@ : analysis at t,
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The Mathematical Model of Data Assimilation

First Assumption

@ Assume that the observations are the result of measuring
quantities that depend on the system state in a known way,
with Gaussian measurement errors:

@ An observation at time ¢ is a triple (y7?, 7;, R;), where y? is
a vector of observed values, and #; and R; describe the
relationship between y/‘? and x(t) by

¥/ = H;i(x(4) + ¢,

where ¢; is a Gaussian random variable with mean 0 and
covariance matrix R;.

Because under this assumption the observations describe the
the atmospheric state by a probability distribution, “best fit” will
refer to “best fit in a statistical sense”
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The Mathematical Model of Data Assimilation

The Least-Square Problem to be Solved

The trajectory of the system that best fits the observations at
times ty < b < --- < t, can be obtained by solving a
least-square problem, an idea originally proposed by Gauss
(around 1795) and Legendre (1805):

@ The likelihood of a trajectory x(t) is proportional to
n 1 B
Lpe(t] =TT exp ( ~ 5137 — )R vy~ Px(e)])
j=1

@ The most likely trajectory is the one that maximizes this
expression, or equivalently minimizes the “cost function”

Z[V, X()1TRTIyP — H(x(4))]-
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The Mathematical Model of Data Assimilation

Approaches to Solve the Formal Problem

@ Long-Time-Window 4D-Var (no practical implementation

exists)
@ Sequential Estimation of the State—(Extended) Kalman
Filter (all practical DA systems)

h

—: model integration
—: analysis

Ve X0(t3)
/
Xo(t,)

/// /,
// xa(ts) - // I

®
Xa@zt)

1

x(tp)
t
Szunyogh I.

Néhany gondolat




The Mathematical Model of Data Assimilation

Rudolf Kalman (May 19, 1930—-July 2, 2016) Receives
the National Medal of Science And Technology
(October 7, 2009)
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The Mathematical Model of Data Assimilation

The Model Equations—Extended Kalman Filter

The analysis x7 = x? ({) is the mean of a multivariate normal
distribution with covariance matrix P]‘?’:

b b
x7 = x; + K;dy;, P = (1-K;)P;

where
X = My (X)),
5y; = y°—H, <x/‘-’),
b T
Py = M +P7M;; 4,
-1
_ pbHT (HPPHT LR
K, = PPH] (H/PjH/- +R,) :
where M;;_1 is the linearization of M;;_; about x? , and H; is
the linearization of H; about x?
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Robust Statistics

The Sources of Errors in the Statistical Model

A particular scheme must be robust to the following types of
errors

@ observations errors that do not satisfy the assumptions

@ model errors (differences between the “true” atmospheric

dynamics and M;;_1)

@ errors of the observation function H;

@ errors of the linearization that produces M; ;_1 and H;

@ nonlinear effects that limit the accuracy of M;;_4 and H;

Robust parameters (statistics) are obtained by replacing the
parameters (statistics) that would be optimal for clean input
data by parameters (statistics) that lead only to slight
degradations of the accuracy for clean data but make the model
robust for contaminated data
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Robust Statistics

Formal Definition of Robust Statistics

Robust statistics must satisfy the following criteria (Huber and
Ronchetti 2009):

o efficiency—for clean input data (data that satisfy the
assumptions of the original statistical model), the results
are almost as good as for the original statistics (perfect
model experiments)

@ stability—small errors in the assumptions lead to small
errors in the (state) estimates

@ breakdown—gross errors in the input data do not lead to
catastrophic breakdown
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Examples

Example 1: Variance Inflation (from Szunyogh, 2014
Applicable Atmospheric Dynamics)

Assimilation of simulated observations of the Henon
Mapping by an Extended Kalman Filter
@ The only sources of error in the statistical model are
nonlinear effects that limit the accuracy of M; ;_1

(] 1 2 3 4 5 7 8
Variance Inflation Coefficient (p)
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Examples

Example 1 (Continued)

Variance inflation (replacing P/’? by pP/‘?, p > 1) reduces the
magnitude and the frequency of error bursts

For more on the dynamics of error bursts see Baek, Hunt, Szunyogh, Zimin, and Ott, 2004, Chaos, 14, 1042-1049.
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Examples

Example 2: Compensating for the Effects of Model
Bias by Modifying R

From Holt, Szunyogh, Gyarmati, Leidner, and Hoffman., 2015, MWR, 143, 3956-3980
@ The model has a single state variable and the background
x? is biased by b, and we have a direct observation y° of x

@ The analysis error has minimum variance, but not
minimum rms

@ The Kalman gain that minimizes the rms error is
R —1
K= <Pb+b2) (Pb+b2+R)

rather than K = (P) (P? + R)™"
@ The same effect can be achieved by using K and replacing
R by

R=R(1+b%/P°)"



Examples

Example 2: Continued

Assume that
@ the data assimilation system uses (P?)!/2 = 4 hPa for the
SLPinaTC
@ the data assimilation system uses (R)'/?2 = 5 hPafor a
TCVitals SLP observation
@ x%is biased with b = 40 hPa
Using R (0.45 hPa?) rather than R (5 hPa?)
@ increases the standard deviation of the analysis error from
3.12 hPa to 4.92 hPa, but reduces the rms error of the
analysis from 24.59 hPa to 4.96 hPa

@ A huge reduction of the analysis bias at the price of a small
increase of the analysis error variance

@ Can be used, if there is no reason to believe that the
analysis with a smaller bias would upset the model
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Examples

Example 3: Coping with Gross Observation Errors
and/or Good Observations that May Shock the Model

Roh, Genton, Jun, Szunyogh, and Hoteit, 2013: Observation Quality Control with a Robust Ensemble Kalman Filter,

MWR, 141, 4414-4428

@ The analysis update equation can be Huberized as
x? = x? + KG (dy),

where G (dy) is the Huber function,
@ For instance, a potential choice for the Huber function is

gy ifloy| < c
G(oy)=<qc ifsy>c
—c ifdy > —c

where c¢ is a prescribed clipping innovation
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Examples

lllustration of Examples 2 and 3 for TC Observations

@ Based on Holt et al., 2015, MWR, 143, 3956-3980

@ Models: NCEP GFS at resolution T62L28, RSM at
resolution 48 km and 28 levels (a glorified toy system)

@ Data assimilation: LETKF

@ Regular observations: all operationally assimilated
non-radiance observations

@ TC observations: TCVitals SLP (R'/2 = 0.5 hPa),
drospsondes from DOTSTAR, QuikSCAT (both with
Huberized innovation)

Szunyogh I. Néhany gondolat



Examples

lllustration: Sinlaku Analyses
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Examples

[llustration: Sinlaku Forecasts
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Examples

Concluding Remarks

@ People have always been working hard on making their
data assimilation systems robust

@ But, they do not like to talk about the adjustments they
make to the error statistics, because they feel that these
are hard to defend (reviewers make sure that they feel that
way!)

@ Keep in mind that the need for such adjustments is fully
expected, as the mathematical model of data assimilation
is not more than an extremely useful but imperfect model

Szunyogh I. Néhany gondolat



	The Mathematical Model of Data Assimilation
	Robust Statistics
	Examples

