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Models

“The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work."– John von Neumann

a spot-on description of the justification of the
mathematical model of data assimilation–this model is
“expected to work”, because it has worked for more than
50 years, with steady improvements of the accuracy;
the “verbal interpretations” are crucial, because they guide
our intuition, but they also tend to make us forget that we
are working with only a model,

–IS
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The Mathematical Model of Data Assimilation

Let x be the m-dimensional vector representing the state of
the model at a given time. The time evolution of the model
is represented by a trajectory {x(t)} in the m-dimensional
state space
Suppose we are given a set of noisy observations of the
atmosphere made at various times
We want to determine which trajectory {x(t)} of the system
fits the observations “best”
The state estimate for a given time t along the trajectory is
called the analysis

Szunyogh I. Néhány gondolat



The Mathematical Model of Data Assimilation
Robust Statistics

Examples

Illustration for m=1: model with one variable

t

x(
t)

: observations
: “best fit” trajectory

ta

: analysis at ta
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First Assumption

Assume that the observations are the result of measuring
quantities that depend on the system state in a known way,
with Gaussian measurement errors:
An observation at time tj is a triple (yo

j ,Hj ,Rj), where yo
j is

a vector of observed values, and Hj and Rj describe the
relationship between yo

j and x(tj) by

yo
j = Hj(x(tj)) + εj ,

where εj is a Gaussian random variable with mean 0 and
covariance matrix Rj .

Because under this assumption the observations describe the
the atmospheric state by a probability distribution, “best fit” will
refer to “best fit in a statistical sense”
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The Least-Square Problem to be Solved

The trajectory of the system that best fits the observations at
times t1 < t2 < · · · < tn can be obtained by solving a
least-square problem, an idea originally proposed by Gauss
(around 1795) and Legendre (1805):

The likelihood of a trajectory x(t) is proportional to

L[x(t)] =
n∏

j=1

exp
(
−1

2
[yo

j −Hj(x(tj))]T R−1
j [yo

j −Hj(x(tj))]
)
.

The most likely trajectory is the one that maximizes this
expression, or equivalently minimizes the “cost function”

Jo({x(t)}) =
n∑

j=1

[yo
j −Hj(x(tj))]T R−1

j [yo
j −Hj(x(tj))].
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Approaches to Solve the Formal Problem

Long-Time-Window 4D-Var (no practical implementation
exists)
Sequential Estimation of the State–(Extended) Kalman
Filter (all practical DA systems)

t

x
(t

)

xb(t1)
xb(t2)

xb(t3)

xb(t4)

xa(t1)

xa(t2)

xa(t3)

xa(t4)

: model integration

: analysis
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Rudolf Kalman (May 19, 1930–July 2, 2016) Receives
the National Medal of Science And Technology
(October 7, 2009)
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The Model Equations–Extended Kalman Filter

The analysis xa
j = xa (tj) is the mean of a multivariate normal

distribution with covariance matrix Pa
j :

xa
j = xb

j + Kjδyj , Pa
j = (I− Kj)Pb

j

where

xb
j = Mj,j−1

(
xa

j−1

)
,

δyj = yo
j −Hj

(
xb

j

)
,

Pb
j = Mj,j−1Pa

j MT
j,j−1,

Kj = Pb
j HT

j

(
HjPb

j HT
j + Rj

)−1
;

where Mj,j−1 is the linearization ofMj,j−1 about xa
j−1, and Hj is

the linearization of Hj about xb
j
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The Sources of Errors in the Statistical Model

A particular scheme must be robust to the following types of
errors

observations errors that do not satisfy the assumptions
model errors (differences between the “true” atmospheric
dynamics andMj,j−1)
errors of the observation function Hj

errors of the linearization that produces Mj,j−1 and Hj

nonlinear effects that limit the accuracy of Mj,j−1 and Hj

Robust parameters (statistics) are obtained by replacing the
parameters (statistics) that would be optimal for clean input
data by parameters (statistics) that lead only to slight
degradations of the accuracy for clean data but make the model
robust for contaminated data
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Formal Definition of Robust Statistics

Robust statistics must satisfy the following criteria (Huber and
Ronchetti 2009):

efficiency–for clean input data (data that satisfy the
assumptions of the original statistical model), the results
are almost as good as for the original statistics (perfect
model experiments)
stability–small errors in the assumptions lead to small
errors in the (state) estimates
breakdown–gross errors in the input data do not lead to
catastrophic breakdown
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Example 1: Variance Inflation (from Szunyogh, 2014:
Applicable Atmospheric Dynamics)

Assimilation of simulated observations of the Henon
Mapping by an Extended Kalman Filter

The only sources of error in the statistical model are
nonlinear effects that limit the accuracy of Mj,j−1
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Example 1 (Continued)

Variance inflation (replacing Pb
j by ρPb

j , ρ > 1) reduces the
magnitude and the frequency of error bursts
For more on the dynamics of error bursts see Baek, Hunt, Szunyogh, Zimin, and Ott, 2004, Chaos, 14, 1042–1049.
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Example 2: Compensating for the Effects of Model
Bias by Modifying R

From Holt, Szunyogh, Gyarmati, Leidner, and Hoffman., 2015, MWR, 143, 3956–3980

The model has a single state variable and the background
xb is biased by b, and we have a direct observation yo of x
The analysis error has minimum variance, but not
minimum rms
The Kalman gain that minimizes the rms error is

K̂ =
(

Pb + b2
)(

Pb + b2 + R
)−1

rather than K =
(
Pb) (Pb + R

)−1

The same effect can be achieved by using K and replacing
R by

R̂ = R(1 + b2/Pb)−1
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Example 2: Continued

Assume that
the data assimilation system uses (Pb)1/2 = 4 hPa for the
SLP in a TC
the data assimilation system uses (R)1/2 = 5 hPa for a
TCVitals SLP observation
xb is biased with b = 40 hPa

Using R̂ (0.45 hPa2) rather than R (5 hPa2)
increases the standard deviation of the analysis error from
3.12 hPa to 4.92 hPa, but reduces the rms error of the
analysis from 24.59 hPa to 4.96 hPa
A huge reduction of the analysis bias at the price of a small
increase of the analysis error variance
Can be used, if there is no reason to believe that the
analysis with a smaller bias would upset the model
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Example 3: Coping with Gross Observation Errors
and/or Good Observations that May Shock the Model

Roh, Genton, Jun, Szunyogh, and Hoteit, 2013: Observation Quality Control with a Robust Ensemble Kalman Filter,

MWR, 141, 4414–4428

The analysis update equation can be Huberized as

xa = xb + KG (δy) ,

where G (δy) is the Huber function,
For instance, a potential choice for the Huber function is

G (δy) =


δy if|δy| < c
c ifδy ≥ c
−c ifδy ≥ −c

where c is a prescribed clipping innovation
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Illustration of Examples 2 and 3 for TC Observations

Based on Holt et al., 2015, MWR, 143, 3956–3980
Models: NCEP GFS at resolution T62L28, RSM at
resolution 48 km and 28 levels (a glorified toy system)
Data assimilation: LETKF
Regular observations: all operationally assimilated
non-radiance observations
TC observations: TCVitals SLP (R1/2 = 0.5 hPa),
drospsondes from DOTSTAR, QuikSCAT (both with
Huberized innovation)
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Illustration: Sinlaku Analyses

panel). The RSMControl experiment with conventional

QC and no additional TC observations performs poorly

and even degrades the GFS LETKF analysis at times.

The GFS LETKF experiment is the set of global ana-

lyses coupled with the RSM forecast model. While the

LETKF control experiments (GFS LETKF and RSM

Control) indicate a similar trend as the NCEP opera-

tional analysis (NCEP Oper ANL), none of them, in-

cluding the NCEP analysis, captures the best track

intensity or trend in intensity. The average track ana-

lyses for the LETKF global and RSM Control experi-

ments are the least accurate among those for which the

results are shown.

The Kept1Slide TCVonly (TCVitals are the only TC

observations and are assimilated in addition to con-

ventional observations) experiment improves the sim-

ulated TC intensity early on, and then again at the end of

the cycling period, but does poorly during the most

FIG. 6. (top) Analyzed minimum SLP and (bottom) average position error over all analysis

cycles for Typhoon Sinlaku. Stars in the top panel indicate the times at which QuikSCAT

observations were available near the TC.

OCTOBER 2015 HOLT ET AL . 3969
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Illustration: Sinlaku Forecasts

For the weak storms, the Combined 0.5 configuration

improves the intensity and position analyses of the original

QC control experiment at the 95% confidence level. The

improvements in the Combined 0.5 configuration over the

global analyses indicate that our global analysis has an 8%

chance of producing the same distribution of errors for

position analysis, while there is a 12% chance of producing

the same intensity errors in the NCEP operational anal-

ysis. Table 3 summarizes these findings.

The statistically significant systematic improvement

of analyzed intensity and position for all storm strengths

over the experiment where the original QC method is

used suggests that the Huberization of the innovation is

an efficient method for observation QC.

Five-day forecasts were started every 12h from the

global and regional LETKF analyses. The results from

these experiments are also binned according to the best

track intensity estimates at verification time. Figures 12

FIG. 8. Difference between daily forecast intensity error averages of the Control and

Combined 0.5 experiments. Each bar indicates the averaged value over the indicated forecast

length started at one of the 35 analysis times for Sinlaku. All values show improvement due to

the assimilation of the TC observations. Gray shading indicates that the improvement is sta-

tistically significant at the 95% confidence level.

3972 MONTHLY WEATHER REV IEW VOLUME 143
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Concluding Remarks

People have always been working hard on making their
data assimilation systems robust
But, they do not like to talk about the adjustments they
make to the error statistics, because they feel that these
are hard to defend (reviewers make sure that they feel that
way!)
Keep in mind that the need for such adjustments is fully
expected, as the mathematical model of data assimilation
is not more than an extremely useful but imperfect model
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