Overview of current developments in AROME-France convective scale operational model

Y. Seity, C.Lac, F. Bouyssel, Y.Bouteloup, S.Riette, V.Masson, F.Beucher, P. Brousseau, E. Wattrelot, T. Montmerle

Outlines

- Introduction

- Presentation of AROME-France configuration
- Examples of recent work in physics
- In data assimilation

- Perspectives

Operational Weather forecasting systems ARPEGE/ALADIN and AROME

and T323c1L70 (~60km)

Observer & comprendre

LAM ALADIN : ~3-days forecasts, dx~8km, 70 vertical levels, dt=450s - *3DVar Data Assimilation*

LAM Cloud Resolving Model AROME-France 30 h forecasts every 6h, dx=2.5km, 60 vertical levels, dt=1mn, ALADIN-NH dynamics, MesoNH physics 3DVar (RUC3h) with radar (reflectivities and winds)

AROME-France 2.5km - Oper

- Oper since December 2008 (CY33T1_op1)
- V2 in April 2010 (direct coupling with ARPEGE, L60, Assim radar Refl) (CY35T2_op1)
- V3 November -2010 (FRANXXL, surface analysis) (CY36t1_op1)
- V4 September 2011 (Hail diagnostic, improvments for low clouds) (CY36t1_op2)
- V5 September 2012 (Improved cloud scheme and shallow convection, GTOPO30 orog, clay sand HSWB) (CY37t1 op1)

5 main forecasts per day (0+30,3+30,6+30,12+36,18+30)

ARPEGE/ALADIN and AROME atmospheric physics

	ARPEGE/ALADIN	AROME
Vertical diffusion	1.5 closure scheme with prognostic TKE (Cuxart et al., 2000) modified according (Cheng et al., 2002)	
L Mixing length	Non local mixing length (Bougeault, Lacarrere, 1989)	
Shallow convection	Moist shallow convection. Cape closure. (Bechtold et al, 2001) (available also in AROME)	Dry and moist shallow convection. Surface flux closure. (Pergaud et al, 2009) (under tests in ARPEGE)
Cloud scheme	Statistical scheme with climatological triangular PDF. (Smith, 90)	Statistical scheme with possibly mixed symmetric (Gaussian) and asymmetric (Exponential) functions. (Bougeault, 82)
Microphysics	1 moment bulk scheme with 4 prognostic variables for cloud droplets, rain, ice crystals and snow (Lopez, 2002)	1 moment bulk scheme with 5 prognostic variables for cloud droplets, rain, ice crystals, snow and graupel (Pinty and Jabouille, 1998)
Deep Convection	Mass flux scheme based on moisture convergence for closure and intensity. (Bougeault, 1985) + modifications	
Subgrid orography	Gravity wave drag. Form drag. Anisotropy. (Catry et al., 2008)	
Radiation	ECMWF codes : LW=RRTM (Mlawer, 97), SW=old IFS scheme (Fouquart, Morcrette)	

Observations in AROME-France

RADARS AIRCRAFTS SYNOP/RADOME

SEVIRI TEMP Ground GPS Part des DFS par type d'obs analyses cut-off AROME - AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011090700 - 2011090721 : 79471

DFS (rain +)

Part des DFS par type d'obs analyses cut-off AROME - AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011110300 - 2011110321 : 121916

DFS (rain +++)

Differences with ARPEGE : radars+use of T2m Hu2m during^{Toujours un temps d'avance}

Radar assimilation - introduction

French ground based radar network :

- 3D scans
- Doppler radial winds
- Radar réflectivity
- resolution ~ 1km x 300m x 15mn

Impact of Doppler winds assimilation in AROME 8 Nov. 2007 : Cold front case

• **CNTRL:** AROME without radar winds • **RADAR:** CNTRL with 17 doppler radar winds data)

Ex V_r 1st scans 18 UTC

• 40--30 • 30-40 • 40--30 • -30--20 • -20--15 • -15--10 • -10--5 • -5--0 • 0-5 • 5--10 • 10--15 • 15--20

• 40--20 • 30--40 • 40--30 = -30--20 = -20--13 = -15--10 = -10--5 = -5-0 = 0-5 = 5-10 = 10-15 = 15-20 • 20-30 = 30-40

• 40--20 • 30-40 • 40--30 • -30--20 • -20-45 • -15--40 • -10--5 • -5--0 • 0--5 • 5--10 • 10-15 • 15-20

E

Analysed divergence at 950 hPa 18 UTC

•Main convergence line well analysed

PARIS Analysis VT: Thursday 8 November 2007 18UTC 950hPa relative divergence

۰.

Simulated reflectivities (analyse 18 UTC)

RADAR (winds)

OBS

rsday 8 November 2007 1 8UTC PARIS | t+1 VT: Thursday 8 November 2007 19UTC Surface :

Thursday 8 November 2007 18UTC PARIS t+2 VT: Thursday 8 November 2007 20UTC Surface:

ursday 8 November 2007 1 8UTC PARIS t+2 VT: Thursday 8 November 2007 20UTC Surface:

Impact of radar reflectivity assimilation

Squall line 8 October 2008

Specific humidity Incr

06h

AROME : Forecasters' Point of View

Comparison between AROME and ALADIN-France (2009-2011)

Comparison a posteriori, for each type of meteorological situation

AROME is able to improve ALADIN forecasts in average.

Cold air convection over-estimated : 26 novembre 2012 15 UTC

Arome P15 Arpege P15 5UTC RRtt03 SOL Ech15H ARP0.5 26/11/12 00UTC RRtt03 SOL Ech15H Arome0.025 26/11/12 00UT - • × ວ SUP 🖗 MZ AZ AŁ 1.0 1 ? sup: د MZ AZ x1.0 i ? B 10 2-RRtt • 2 <u>م</u> RIf <mark>□RlfG</mark> □TrHr RlfG Ŧ □ TrM

Observation : 26/11/2012 à 15 UTC

Example of 1st July 2012 :

A summer convective event

24h cumulative rainfalls :

Probabilistic scores

Evaluation of **ARPEGE/AROME** RR24

AROME performs better than ARPEGE mostly in summer.

Zoom over last summer : Distribution (JJA 2012)

Histograms of observed and forecasted precipitation Width of the rain classes = 0.2 mm/day 1e+05 Super-obs PA AROME 10000 1000 and a stand and 100 10 0 10 15 20 25 30 40 45

BSS against persistence

AROME-AMMA

- AMMA well-documented case 23-29 July 2006 Barthe et al., 2010
 - Intense Monsoon surge over Sahel propagating westward with AEW : Convective events

• NWP at low resolution: fails to reproduce AEW and the coupling with convection

• High-resolution (CRM): Better representation of the AEW-convection link. Small overestimation of the strong precipitation

Beucher et al., to be submitted

- Introduction

- Presentation of AROME-France configuration

- Examples of recent work in physics

- In data assimilation

- Perspectives

In ICE3 microphysics scheme, hail is part of 'graupel', but graupel never reach the soil (except in winter or/and over montains) -> Forecasters need something else to forecast hail with AROME

Hail diagnostic

- ICE4 tests : disappointing results : very sensitive to the time step, and too active (small amount of hail but everywhere there is graupel in altitude)

- Despite a lot of sensitivity tests, we did not manage to tune the scheme correctly
- => not ready for operational use
- => We tried to diagnose hail in the model with ICE3 :
- 1. Compute each time step, vertically integrated graupel content
- 2. write in output files the maximal value since last file

(Example of 11 May 2009, diag available for forecasters since September 2011)

Positively evaluated from 2009 year

Improvement of the cloud scheme

Saturation deficit distribution

PDF (%)

PDF (%)

PDF (%)

Statistical analysis of BL clouds to characterize the distribution of horizontal subgrid cloud variability

Non symetric bell shaped curves

Perraud et al, BLM, 2011

Larson et al (2001), Golaz et al (2002) **Double gaussian**

(linear combination of two simple Gaussian distributions)

Improvement of the cloud scheme

3 options in test in AROME

« DIRECT » (oper)

CF and Rc/Ri are diagnosed directly from updraft variables. (Pergaud et al, 2009)

$$CF = \alpha \times \frac{M}{\rho w}$$

Riette et al., to be submitted

« STAT »

A variance is diagnosed from updraft variables, added to the turbulence one and applied to an uni-modal PDF (Chaboureau et al, 2005)

« BI-GAUSSIAN »

A variance is diagnosed from updraft variables applied to a double-Gaussian PDF with one mode for the environment (turbulence) and one for shallow convection (Perraud et al, 2011)

Improvement of the cloud scheme

(9 April 2010 at 12h)

Riette et al., to be submitted

On-going evaluation with soundings and satellite products

Meso-NH : Subgrid rain Turner et al, GMD, 2012

To represent the gradual transition from non precipitating to fully precipitating grids

Will be evaluated in AROME in 2013

Simulation of polluted/non polluted areas with ICE3 : Fog case studies of variation of Nc in microphysics and radiation

-The variation on Nc has a significant impact on fog structure (qc content and vertical extent of the fog). The impact is smaller on formation and dissipation times.

-Impact of a more sophisticated 2-moments microphysics scheme is reduced.

Outlines

- Introduction

- Presentation of AROME-France configuration
- Examples of recent work in physics
- In data assimilation

- Perspectives

Diagnosis of the impact of observations in AROME analysis

- Most important parts of r are provided by :
 - Surface observations
 - Plane
 - Radar

Increase of the assimilation cycle frequency

- Weakness of the representation of the temporal dimension in AROME-France data assimilation system (3D-Var): inefficient use of observations with high temporal and often spatial coverage (radar measurements), which are quite very informative at meso-scale.
- Scheme as 4D-Var or EN-Var could solve this problem but : difficult implementation, important numerical costs.
- 3D-FGAT has been evaluated : allows to compare the observation with the background at the observation time (as in 4D-Var) but assumes the innovation vector to be constant both in time and space during the minimization (as in 3D-Var) :
 - Useful for observations far from the center of the assimilation window
 - Not adapted for static stations with numerous observations along the assimilation window : the different innovations are averaged.
- At short term, increase of the cycle frequency in order to assimilate more observations.

 3D-Var : reducing RUC assimilation window allows to assimilate more observations, and more properly.

Problem of spin-up

- Spin-up : numerical noise in the first ranges of a model integration.
- Risk of accumulating noises and imbalances through the assimilation cycle decreasing system performances : choice of a 3-h period for the AROME-France operational cycle.
- Some sources of imbalance have been identified and reduced
 - Imbalances in the 3D-Var increment : the use of a new B matrix (Brousseau et al. 2011) more representative of small scales allows to reduce it substantially (XP_NEWJB). This B is estimated with forecast differences from an AROME-France assimilation ensemble instead of forecast obtained in dynamical adaptation (operational since April 2010).
 - Inconsistency at initial time between LBC (ARPEGE analysis) and the initial state (AROME analysis): the use of the AROME analysis as LBC also allows to reduce spin-up in the first hour (operational since November 2011).
- Residual spin-up can be reduced using filtering methods as Incremental Digital Filter Initialization or Incremental Analysis Update

1-h/3-h cycle comparison : composite indicator

- 1 month experiment
- Composite score composed by normalized RMSE of T2m and Brier Skill Scores of maximal wind gust and 6h cumulative precipitations with a tolerance of 50 km averaged
 - for 6, 12, 18 and 24-h forecast ranges
 - For different excess thresholds
- BSS of brightness temperature of 10.8 μm SEVIRI channel
- BSS of 24-h cumulative precipitation (6-30h ranges)

- Improvements, except for T2m (neutral) and RR6 (deterioration at 6 and 12-h forecast ranges, while other ranges are improved).
- The use of the 2 filtering methods do not correct this problem and leads to a deterioration of wind scores

7-9 November 2011 case study

- Tropical-like Mediterranean Storm
- Location of the pressure minimum estimated from MSG images and analyzed by AROME-France 3-h and 1-h assimilation cycle (each 3-h from OOUTC the 8/11 to O6 UTC the 9/11) and IFS (each 6-h):
 - Both data assimilation systems using more observations (IFS with 4D-Var and AROME-France with a 1-h assimilation cycle) are able to analyze a trajectory spatially and temporally consistent with the observation
 - The 3-h cycle analyzed trajectory is more erratic.

Perspectives

By 2014 (thank to our new Bull machine) :

- Deterministic AROME 1.3 km
- Ensemble forecasts at 2.5 km (~10 members)

Plans for 2014 : AROME 1.3 km

AROME : Dx~1.3 km x ~L90

Vertical resolution

Firsts results from AROME 1.3km

Planned to be oper in 2014

Evolution of mean hourly cumulated rainfalls over France (JJA 2012)

Overview of current developments in AROME-France convective scale operational model

Y. Seity, C.Lac, F. Bouyssel, Y.Bouteloup, S.Riette, V.Masson, F.Beucher, P. Brousseau, E. Wattrelot, T. Montmerle

